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2. HEAT TRANSFER AND THERMAL STRESSES

Temperature may influence the strength of a structure by:

- thermal expansion effect (thermal stresses)

- impact of the temperature on the mechanical properties of materials
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Thermal expansion coefficient
Thermal stresses may be caused by

a(T) = (M) =) _ Al _eM) - non uniform temperature field
(T-Te)1(T) AT AT - temperature change and nonhomogeneous
materials
Ex axAT éx - temperature change and statically
&y a,AT &y indeterminate constraints (reactions)
{y={ck +{c} & | _ AT L Total strain vector is the sum of thermal strain and

0 elestic strain vectors.

7V xy 7 xy
0 (Hooke’s law {o}=[D{e}s !)

Yy Yy

Vxa 0 J; IR

To — reference temperature for an unstrained state, in isotropic case ax= ay= 0= o

Example — simple relation temperature-stress in the case of statically indeterminate constraints

The simple bar r/ AT
fixed at both ends The elongation equals 0 —> longitudinal strain &x= 0
X > gx:ng+5xs=On
Er =0AT , g =0,/ E.
= AT ox
XS X
_ +— GX - ngs - _EaAT
- For typical steel
change of the AT Al (E=2x105 MPa, v=0,3, @ =1,2x10-51/°C) and
temperature AT z AT =100°C theresultis o, =240 MPa
+
+
Ox
. <
compression >
7T




FEM Il - Lecture 2 Page 3 of 14

The standard approach in thermal stresses analysis using FEM:
A. The heat flow analysis (steady state or transient)
B. The stress analysis using the current temperature field as a kind of body forces
A.THERMAL ANALYSIS
Partial differential equation describing transient heat flow through a solid (law of conservation of energy):
i =g(ﬂxgj+g(%gj+g(ﬂz Q}rqv(x, y.zt), Tt —temperature,
o ox\ ox) oyl oy) a\ oz q, — int. heat generation rate per unit volume(W/m?),

2 2 2
isotropic case a. ’ aT2 +8T2 +8T2
ot Xt oyt o

Ao Ay, 4, — heat conductivity coefficients(W/mK),

j+qV =a, VT +q,,
p— density (kg/m?3),

where aq=A/cp is the thermal diffusivity c— specific heat (J/kg)

Thermal properties of selected materials at 20°C (RT)

Material Thermal expansion coefficient | Thermal conductivity Specific heat Density
a (1/°C) A (W/mK) ¢ (J/kgK) p (kg/m?3)
Copper 1,7-10% 390 400 9000
Aluminium 2,4-10° 210 900 2700
Pine wood 0,4-0,6-10° 0,1-0,5 1300-2700 500-700
Steel 1H13 1,1-10° 29 440 7700
Glass 0,05-0,09-10° 0,7-1,3 600-800 2500
Rubber 7,7-10° 0,16 1400 1200
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Three modes of heat transfer: conduction, convection, radiation

Conduction
Is the transfer of thermal energy through the solid body or fluid
due to the temperature gradient.

The equation describing this heat transfer is Fourier’s law.
For an isotropic medium: g =-Agrad(T)

where Q is the rate of heat flow per unit area (heat flux) and A is the thermal conductivity.

Convective Heat Flow

The transfer of thermal energy between the solid object and its environment due to fluid motion.

The rate of heat flow across a boundary is proportional to the difference

between the surface temperature and the temperature of adjacent fluid
= (To—T.)  (Newton's law)
where oy is the convection coefficient (film coefficient)

Typical magnitudes of convection coeeficient (W/(m?K))

Medium (fluid) | Free convection Forced convection
gas (air) 5-30 30-500
water 30-300 300-20000
oil 5-100 30-3000
liquid metals 50-500 500-20000

Radiation Heat Exchange
Stefan — Boltzman's law:

€ :gO'0T4 =CT+4 )
0o =5,67-10-8 W/m2K4
& emissivity of the surface (0<&<1)
The heat exchange between two parallel surfaces
Oag = gABCo [(TA /100)4 _(TB /100)4] )
Co=10% o,
= 1
e, +1l ey -1

In computational practice heat exchange across boundary
(by radiation and convection) is usually described by the
convection model q=«, (To —T,) where axis the adequate

function of temperature.

The simplest case of heat flow — steady state heat transfer with constant isotropic material properties.

In that case the heat flow equation reduces to Poisson’s equation:

VT +f =0
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FE method for Poisson’s equation in 2D space

0T o°T
8—xf+8—x22+f(xl'X2)_o’ |

where X = (X, X,) €Q

Boundary conditions

T(X)=T, , Xel,
OoT (X _
o(x) = aﬁl’=qo, Xe,

(prescribed temperature or prescribed thermal flux)

Minimized functional in FEM formulation

nodes elements

domain Q

1

M=

2 2
L I R —2F (X, X,)T dQ—jqudr,
2(2 T,

8_x1 OX,

q

LE
Q=JQ, i=1..LE
i=1

LE — number of the elements in the domain Q

Approximation of the unknown function (temperature) within an element

LWE

T(Xl’ Xz) = Z Ni(Xl’ Xz)Ti

T,,i=1,.,LWE nodal temperatures,

Ni(x1,x2) — shape functions.

LWE — number of nodes of the element
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2
oT oT
I(T) Z .[ [ax ] (ax ] - 21 (Xl’ XZ)T ZI qOTdF LK number of element sideson T, .
i1 2 Q; 2 1=l T,

Within the finite element:

oT _ &N,
ox, S ox
oT N,

- Ui-
OX, it OX,

Finally the mimimized functional is replaced by the function of several variables u;

kll klZ k13 cee leW ] Tl bl
1 k21 kzz k23 T2 b2
I(u)zELTl,TZ,T3,...,TLWJ Ky, Ky Ty =TT s Tow 3] by
L kLW1 kLW LW i TLW b LW

LT IKKTIAT )b}

Minimum- necessary (and sufficient) conditions:

S—leo, i=1...,LW. => [K]{T} = {b} + Dirichlet b.c.
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B. Thermal stresses — FE equations in the case of mechanical and thermal loads

e}=le); +lel. ), =[O (o} e

[D] — material stiffness matrix [D] * material flexibility matrix a,AT
{5} :[B]{q}e. [B] — element strain matrix ér = 0 (

(o} =[P]ie}, =[PI({e}~{e}, ) =[P [Blial, ~{e ). ¢ o

FEM equations derived from the principle of virtual work - taking into account thermal strains

{5Cl}e - vector of nodal virtual displacements of an finite element
Using Hooke’s law (*) we get:

{58} = [B] {5Q}e - vector of virtual strains within the element [k]e {q}e _ {F}e i { F. }e |
Principle of virtual work for an element [k] j [B]T [D][B] 40
Lan J- L5‘9J e 3 e - element stiffness matrix
T
[oal, {F}, -Loal, I B] {o}dQ, =0, W, :J [BJ [Dliejde) additional
T vector of nodal forces
quJe {F}e _é[ [B] {G} dQe =0. (nodal forces caused by temperature)

FE set of equations for the model

{F}e—i[sf{a}dﬂfo [K{a}={F}+{F}
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Thermal stresses in rod elements
Basic relations for 2 node rod element
q N,() =1-, AT(S)
u(§)=|_N1, Nz_l{ 1} » the shape functions : : )
2 ), Nz(g)zlé_ AT, WW AT,
e I —

£(8) = —é—LNmNzJ{qZ} - o) =E(e®)-&).

e

AT(E) = N,(), N, (&) J{ﬂ} (7). = [ (8] [D}ie}, o0

Vector of thermal nodal forces

{FT}e:i[B]T[D]{g}TdQe=é;{:;}a E[ N, N JdQ{ }
3
1
2

| ' ’ ] .
| N/N,  N/N AT, AT,
=0£EAJ. 11 T2 el Sl GEA 2 1
AT, AT,

o LNaNy NoN, |

2

1
2

AT, + AT, -1
(R}, = TzaEA{ 1}.

~—

@ql @ q.

BT =[] {0

[D]=E,

(¢} =& =aAT (&) =a| NN J{AT}

AT,
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EXAMPLE

Find the elongation of the rod loaded by the force P and the temperature distribution AT

[k]. g, ={F}. +{F .. AT, AT,

S o e
— @ 2

q1:0
EA AT, + AT,
—.q,=P+—1-"2gEA,
I 2
Pl AT, +AT,
0, = a
EA 2
EXAMPLE
Find the stresses in both part of the constrained with heated part AB
7 4=0,0,=0 = EA(I ul? qu:aEAAT.
A B EA ¢ 1,1,
g, =aaT 1 _ a7 20=28)
-2 - I1+I2 |
o | o 110 |
Element 1 : 81=LN1',N£J{q1}={——,—J{ }zizaAT—_a,
q2 a a q2 a I
110 .
| | — E(g,—aAT) =—aATE =
9 1 & ) & 2o F 0, = E(5, ~0AT) =—aATE |
EA| -= | =+= | —= = aEAAT _
) @) ® l, |1+|2 1, % “ Element 2: LNl,NJ t L 1 J % _ 0% =—0(AT—,
0, I:3 —a I— 0 |— |
o | 1|1 )
l, l, o,=E(g,-0)= —aATET.




FEM Il - Lecture 2

Page 10 of 14

EXAMPLE OF ENGINEERING PROBLEMS OF THERMAL STRESSES
FE analysis of a high pressure T-connection (steady state problem)

The aim of the analysis was to find stress and strain distribution in a T-connection
caused by high internal pressure (2600 at) and the non-uniform temperature.
External cooling, assembly procedure (screw pretension), contact and plasticity
effects have been included. The project done for ORLEN petrochemical company

FE model

Von Mises stress
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FEM analysis of local stress concentrations caused by impact thermal loads
Analysis description:

e The main purpose of the analysis was to find stress concentration close to notches during the heating-cooling process.

e Temperature applied at the upper surface, T(t), had been taken from experiments. Analysis were performed for three notch’s
radius R (R=0.5, 1.0, 2.0 mm).

Initial and boundary conditions:
e Temperature of the bottom surface (line in 2D model) T = T(to) is constant during the process.

e Reference temperature for structural analysis Trer = T(to).Material properties — functions of temperature. No initial stress. Plane

strain, Transient analysis, Elasto-plastic material behaviour

<1 >
Notch B T—T(t)
IR A )
1
2 < >

i R ATHR g1 T L R

2 450
A
5 \

o =

" / 250 ~
\ / 200 // \\ —
) 100 \ - \’/-
Dimensions of the analysed model \ Notch A

Temperature as the function of time at the surface of the die (from
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Model of the body with the thin layer subjected to heating- simple analytical considerations
Assuming h<<t within the heated layer is

-1

_ oy =0, =——EaAT,
& =0, Y 1w
gy =0, o, =0.

For AT=200C the resultis ox= cy=685MPa

g= —Agrad(T) q=a(T,—T,) Biotnumber Bi= a;'l gives a simple index of the ratio of the heat transfer resistances inside of and at the

surface of a body. This ratio determines whether or not the temperatures inside a body will vary significantly in space, while the body heats or cools
over time, from a thermal gradient applied to its surface.
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Von Mises stress distribution at time tx. Notch radius R=0.5 mm.
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FE analysis of thin-walled elements' deformation during aluminium injection moulding

Numerical simulations have been performed to model the process of filling the mould by hot aluminium alloy. The analysis has enabled
improvements of the element stiffness diminishing geometrical changes caused by the process. Fluid flow simulation with transient thermal analysis
including phase change have been performed, followed by the structural elasto-plastic calculation of residual effects.

Temperature distribution (cooling effect) and displacements

FE model Velocity field during
injection process

Residual stress distribution

FE model of the die

Velocity and temperature distribution



